Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(4): 1753-1770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146206

RESUMO

Global change is reshaping Earth's biodiversity, but the changing distributions of nonpathogenic fungi remain largely undocumented, as do mechanisms enabling invasions. The ectomycorrhizal Amanita phalloides is native to Europe and invasive in North America. Using population genetics and genomics, we sought to describe the life history traits of this successfully invading symbiotic fungus. To test whether death caps spread underground using hyphae, or aboveground using sexual spores, we mapped and genotyped mushrooms from European and US sites. Larger genetic individuals (genets) would suggest spread mediated by vegetative growth, while many small genets would suggest dispersal mediated by spores. To test whether genets are ephemeral or persistent, we also sampled from populations over time. At nearly every site and across all time points, mushrooms resolve into small genets. Individuals frequently establish from sexual spores. But at one Californian site, a single individual measuring nearly 10 m across dominated. At two Californian sites, the same genetic individuals were discovered in 2004, 2014, and 2015, suggesting single individuals (both large and small) can reproduce repeatedly over relatively long timescales. A flexible life history strategy combining both mycelial growth and spore dispersal appears to underpin the invasion of this deadly perennial ectomycorrhizal fungus.


Assuntos
Amanita , Florestas , Espécies Introduzidas , Esporos Fúngicos , Amanita/genética , Amanita/crescimento & desenvolvimento , Amanita/fisiologia , Fatores de Tempo
2.
Nat Commun ; 14(1): 6560, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875491

RESUMO

Canonical sexual reproduction among basidiomycete fungi involves the fusion of two haploid individuals of different mating types, resulting in a heterokaryotic mycelial body made up of genetically different nuclei. Using population genomics data and experiments, we discover mushrooms of the invasive and deadly Amanita phalloides can also be homokaryotic; evidence of sexual reproduction by single, unmated individuals. In California, genotypes of homokaryotic mushrooms are also found in heterokaryotic mushrooms, implying nuclei of homokaryotic mycelia are also involved in outcrossing. We find death cap mating is controlled by a single mating type locus, but the development of homokaryotic mushrooms appears to bypass mating type gene control. Ultimately, sporulation is enabled by nuclei able to reproduce alone as well as with others, and nuclei competent for both unisexuality and bisexuality have persisted in invaded habitats for at least 17 but potentially as long as 30 years. The diverse reproductive strategies of invasive death caps are likely facilitating its rapid spread, suggesting a profound similarity between plant, animal and fungal invasions.


Assuntos
Agaricales , Basidiomycota , Humanos , Animais , Agaricales/genética , Reprodução/genética , Basidiomycota/genética , Genótipo , Genes Fúngicos Tipo Acasalamento
3.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330626

RESUMO

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Assuntos
Micorrizas , Simbiose , Animais , Humanos , Ecossistema , Fungos , Insetos , Plantas , Esporos Fúngicos
4.
Appl Environ Microbiol ; 89(7): e0081223, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338413

RESUMO

Carnivorous pitcher plants are uniquely adapted to nitrogen limitation, using pitfall traps to acquire nutrients from insect prey. Pitcher plants in the genus Sarracenia may also use nitrogen fixed by bacteria inhabiting the aquatic microcosms of their pitchers. Here, we investigated whether species of a convergently evolved pitcher plant genus, Nepenthes, might also use bacterial nitrogen fixation as an alternative strategy for nitrogen capture. First, we constructed predicted metagenomes of pitcher organisms from three species of Singaporean Nepenthes using 16S rRNA sequence data and correlated predicted nifH abundances with metadata. Second, we used gene-specific primers to amplify and quantify the presence or absence of nifH directly from 102 environmental samples and identified potential diazotrophs with significant differential abundance in samples that also had positive nifH PCR tests. Third, we analyzed nifH in eight shotgun metagenomes from four additional Bornean Nepenthes species. Finally, we conducted an acetylene reduction assay using greenhouse-grown Nepenthes pitcher fluids to confirm nitrogen fixation is indeed possible within the pitcher habitat. Results show active acetylene reduction can occur in Nepenthes pitcher fluid. Variation in nifH from wild samples correlates with Nepenthes host species identity and pitcher fluid acidity. Nitrogen-fixing bacteria are associated with more neutral fluid pH, while endogenous Nepenthes digestive enzymes are most active at low fluid pH. We hypothesize Nepenthes species experience a trade-off in nitrogen acquisition; when fluids are acidic, nitrogen is primarily acquired via plant enzymatic degradation of insects, but when fluids are neutral, Nepenthes plants take up more nitrogen via bacterial nitrogen fixation. IMPORTANCE Plants use different strategies to obtain the nutrients that they need to grow. Some plants access their nitrogen directly from the soil, while others rely on microbes to access the nitrogen for them. Carnivorous pitcher plants generally trap and digest insect prey, using plant-derived enzymes to break down insect proteins and generate a large portion of the nitrogen that they subsequently absorb. In this study, we present results suggesting that bacteria living in the fluids formed by Nepenthes pitcher plants can fix nitrogen directly from the atmosphere, providing an alternative pathway for plants to access nitrogen. These nitrogen-fixing bacteria are only likely to be present when pitcher plant fluids are not strongly acidic. Interestingly, the plant's enzymes are known to be more active under strongly acidic conditions. We propose a potential trade-off where pitcher plants sometimes access nitrogen using their own enzymes to digest prey and at other times take advantage of bacterial nitrogen fixation.


Assuntos
Bactérias Fixadoras de Nitrogênio , Animais , RNA Ribossômico 16S/genética , Insetos , Bactérias/genética , Nitrogênio/análise , Alcinos
5.
ISME J ; 17(8): 1236-1246, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221394

RESUMO

The poisonous European mushroom Amanita phalloides (the "death cap") is invading California. Whether the death caps' toxic secondary metabolites are evolving as it invades is unknown. We developed a bioinformatic pipeline to identify the MSDIN genes underpinning toxicity and probed 88 death cap genomes from an invasive Californian population and from the European range, discovering a previously unsuspected diversity of MSDINs made up of both core and accessory elements. Each death cap individual possesses a unique suite of MSDINs, and toxin genes are significantly differentiated between Californian and European samples. MSDIN genes are maintained by strong natural selection, and chemical profiling confirms MSDIN genes are expressed and result in distinct phenotypes; our chemical profiling also identified a new MSDIN peptide. Toxin genes are physically clustered within genomes. We contextualize our discoveries by probing for MSDINs in genomes from across the order Agaricales, revealing MSDIN diversity originated in independent gene family expansions among genera. We also report the discovery of an MSDIN in an Amanita outside the "lethal Amanitas" clade. Finally, the identification of an MSDIN gene and its associated processing gene (POPB) in Clavaria fumosa suggest the origin of MSDINs is older than previously suspected. The dynamic evolution of MSDINs underscores their potential to mediate ecological interactions, implicating MSDINs in the ongoing invasion. Our data change the understanding of the evolutionary history of poisonous mushrooms, emphasizing striking parallels to convergently evolved animal toxins. Our pipeline provides a roadmap for exploring secondary metabolites in other basidiomycetes and will enable drug prospecting.


Assuntos
Agaricales , Amanita , Amanita/genética , Agaricales/genética , Biologia Computacional
6.
Appl Environ Microbiol ; 89(5): e0216822, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098892

RESUMO

Host range and specificity are key concepts in the study of infectious diseases. However, both concepts remain largely undefined for many influential pathogens, including many fungi within the Onygenales order. This order encompasses reptile-infecting genera (Nannizziopsis, Ophidiomyces, and Paranannizziopsis) formerly classified as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). The reported hosts of many of these fungi represent a narrow range of phylogenetically related animals, suggesting that many of these disease-causing fungi are host specific, but the true number of species affected by these pathogens is unknown. For example, to date, Nannizziopsis guarroi (the causative agent of yellow fungus disease) and Ophidiomyces ophiodiicola (the causative agent of snake fungal disease) have been documented only in lizards and snakes, respectively. In a 52-day reciprocal-infection experiment, we tested the ability of these two pathogens to infect currently unreported hosts, inoculating central bearded dragons (Pogona vitticeps) with O. ophiodiicola and corn snakes (Pantherophis guttatus) with N. guarroi. We confirmed infection by documenting both clinical signs and histopathological evidence of fungal infection. Our reciprocity experiment resulted in 100% of corn snakes and 60% of bearded dragons developing infections with N. guarroi and O. ophiodiicola, respectively, demonstrating that these fungal pathogens have a broader host range than previously thought and that hosts with cryptic infections may play a role in pathogen translocation and transmission. IMPORTANCE Our experiment using Ophidiomyces ophiodiicola and Nannizziopsis guarroi is the first to look more critically at these pathogens' host range. We are the first to identify that both fungal pathogens can infect both corn snakes and bearded dragons. Our findings illustrate that both fungal pathogens have a more general host range than previously known. Additionally, there are significant implications concerning the spread of snake fungal disease and yellow fungus disease in popular companion animals and the increased chance of disease spillover into other wild and naive populations.


Assuntos
Lagartos , Micoses , Onygenales , Animais , Lagartos/microbiologia , Micoses/veterinária , Micoses/microbiologia , Serpentes/microbiologia
7.
J Fungi (Basel) ; 9(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108928

RESUMO

Uniparental inheritance of mitochondria enables organisms to avoid the costs of intracellular competition among potentially selfish organelles. By preventing recombination, uniparental inheritance may also render a mitochondrial lineage effectively asexual and expose mitochondria to the deleterious effects of Muller's ratchet. Even among animals and plants, the evolutionary dynamics of mitochondria remain obscure, and less is known about mitochondrial inheritance among fungi. To understand mitochondrial inheritance and test for mitochondrial recombination in one species of filamentous fungus, we took a population genomics approach. We assembled and analyzed 88 mitochondrial genomes from natural populations of the invasive death cap Amanita phalloides, sampling from both California (an invaded range) and Europe (its native range). The mitochondrial genomes clustered into two distinct groups made up of 57 and 31 mushrooms, but both mitochondrial types are geographically widespread. Multiple lines of evidence, including negative correlations between linkage disequilibrium and distances between sites and coalescent analysis, suggest low rates of recombination among the mitochondria (ρ = 3.54 × 10-4). Recombination requires genetically distinct mitochondria to inhabit a cell, and recombination among A. phalloides mitochondria provides evidence for heteroplasmy as a feature of the death cap life cycle. However, no mushroom houses more than one mitochondrial genome, suggesting that heteroplasmy is rare or transient. Uniparental inheritance emerges as the primary mode of mitochondrial inheritance, even as recombination appears as a strategy to alleviate Muller's ratchet.

8.
bioRxiv ; 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36778337

RESUMO

Canonical sexual reproduction among basidiomycete fungi involves the fusion of two haploid individuals of different sexes, resulting in a heterokaryotic mycelial body made up of genetically different nuclei 1 . Using population genomics data, we discovered mushrooms of the deadly invasive Amanita phalloides are also homokaryotic, evidence of sexual reproduction by single individuals. In California, genotypes of homokaryotic mushrooms are also found in heterokaryotic mushrooms, implying nuclei of homokaryotic mycelia also promote outcrossing. We discovered death cap mating is controlled by a single mating-type locus ( A. phalloides is bipolar), but the development of homokaryotic mushrooms appears to bypass mating-type gene control. Ultimately, sporulation is enabled by nuclei able to reproduce alone as well as with others, and nuclei competent for both unisexuality and bisexuality have persisted in invaded habitats for at least 17 but potentially as long as 30 years. The diverse reproductive strategies of invasive death caps are likely facilitating its rapid spread, revealing a profound similarity between plant, animal and fungal invasions 2,3 .

9.
Environ Microbiol ; 24(8): 3500-3516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35384233

RESUMO

Plant-associated microbial communities can profoundly affect plant health and success, and research is still uncovering factors driving the assembly of these communities. Here, we examine how geography versus host species affects microbial community structure and differential abundances of individual taxa. We use metabarcoding to characterize the bacteria and eukaryotes associated with five, often co-occurring species of Sarracenia pitcher plants (Sarraceniaceae) and three natural hybrids along the longitudinal gradient of the U.S. Gulf Coast, as well as samples from S. purpurea in Massachusetts. To tease apart the effects of geography versus host species, we focus first on sites with co-occurring species and then on species located across different sites. Our analyses show that bacterial and eukaryotic community structures are clearly and consistently influenced by host species identity, with geographic factors also playing a role. Naturally occurring hybrids appear to also host unique communities, which are in some ways intermediate between their parent species. We see significant effects of geography (site and longitude), but these generally explain less of the variation among pitcher communities. Overall, in Sarracenia pitchers, host plant phenotype significantly affects the pitcher microbiomes and other associated organisms.


Assuntos
Microbiota , Sarraceniaceae , Bactérias/genética , Eucariotos , Geografia , Microbiota/genética , Sarraceniaceae/genética , Sarraceniaceae/microbiologia
10.
Mycologia ; 113(6): 1253-1263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34477498

RESUMO

Nannizziopsis guarroi is an ascomycete fungus associated with a necrotizing dermatitis in captive green iguanas (Iguana iguana) and bearded dragons (Pogona vitticeps) across both Europe and North America. Clinical signs of the disease include swelling and lesion formation. Lesions develop from white raised bumps on the skin and progress into crusty, yellow, discolored scales, eventually becoming necrotic. The clinical signs are the basis of a colloquial name yellow fungal disease (YFD). However, until now, N. guarroi has not been confirmed as the primary agent of the disease in bearded dragons. In this experiment, we fulfill Koch's postulates criteria of disease, demonstrating N. guarroi as the primary agent of YFD in bearded dragons.


Assuntos
Chrysosporium , Lagartos , Micoses , Onygenales , Animais , Lagartos/microbiologia , Micoses/microbiologia
11.
Mycologia ; 113(2): 300-311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497296

RESUMO

Basidiomycete fungi eject basidiospores using a surface tension catapult. A fluid drop forms at the base of each spore and, after reaching a critical size, coalesces with the spore and launches it from the gill surface. It has long been hypothesized that basidiomycete fungi pack the maximum number of spores into a minimal investment of biomass. Building on a nascent understanding of the physics underpinning the surface tension catapult, we modeled a spore's trajectory away from a basidium and demonstrated that to achieve maximum packing the size of the fluid drop, the size of the spore, and the distance between gills must be finely coordinated. To compare the model with data, we measured spore and gill morphologies from wild mushrooms and compared measurements with the model. The empirical data suggest that in order to pack the maximum number of spores into the least amount of biomass, the size of Buller's drop should be smaller but comparable to the spore size. Previously published data of Buller's drop and spore sizes support our hypothesis and also suggest a linear scaling between spore radius and Buller's drop radius. Morphological features of the surface tension catapult appear tightly regulated to enable maximum packing of spores. If mushrooms are maximally packed and Buller's drop radii scale linearly with spore radii, we predict that intergill distance should be proportional to spore radius to the power 3/2.


Assuntos
Agaricales/citologia , Agaricales/fisiologia , Esporos Fúngicos/fisiologia
12.
Genome Biol Evol ; 12(11): 2168-2182, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32926145

RESUMO

By introducing novel capacities and functions, new genes and gene families may play a crucial role in ecological transitions. Mechanisms generating new gene families include de novo gene birth, horizontal gene transfer, and neofunctionalization following a duplication event. The ectomycorrhizal (ECM) symbiosis is a ubiquitous mutualism and the association has evolved repeatedly and independently many times among the fungi, but the evolutionary dynamics enabling its emergence remain elusive. We developed a phylogenetic workflow to first understand if gene families unique to ECM Amanita fungi and absent from closely related asymbiotic species are functionally relevant to the symbiosis, and then to systematically infer their origins. We identified 109 gene families unique to ECM Amanita species. Genes belonging to unique gene families are under strong purifying selection and are upregulated during symbiosis, compared with genes of conserved or orphan gene families. The origins of seven of the unique gene families are strongly supported as either de novo gene birth (two gene families), horizontal gene transfer (four), or gene duplication (one). An additional 34 families appear new because of their selective retention within symbiotic species. Among the 109 unique gene families, the most upregulated gene in symbiotic cultures encodes a 1-aminocyclopropane-1-carboxylate deaminase, an enzyme capable of downregulating the synthesis of the plant hormone ethylene, a common negative regulator of plant-microbial mutualisms.


Assuntos
Amanita/genética , Duplicação Gênica , Transferência Genética Horizontal , Micorrizas/genética , Simbiose/genética , Família Multigênica , Filogenia , Seleção Genética
13.
Proc Natl Acad Sci U S A ; 117(10): 5134-5143, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098849

RESUMO

Fungi disperse spores to move across landscapes and spore liberation takes different patterns. Many species release spores intermittently; others release spores at specific times of day. Despite intriguing evidence of periodicity, why (and if) the timing of spore release would matter to a fungus remains an open question. Here we use state-of-the-art numerical simulations of atmospheric transport and meteorological data to follow the trajectory of many spores in the atmosphere at different times of day, seasons, and locations across North America. While individual spores follow unpredictable trajectories due to turbulence, in the aggregate patterns emerge: Statistically, spores released during the day fly for several days, whereas spores released at night return to ground within a few hours. Differences are caused by intense turbulence during the day and weak turbulence at night. The pattern is widespread but its reliability varies; for example, day/night patterns are stronger in southern regions. Results provide testable hypotheses explaining both intermittent and regular patterns of spore release as strategies to maximize spore survival in the air. Species with short-lived spores reproducing where there is strong turbulence during the day, for example in Mexico, maximize survival by releasing spores at night. Where cycles are weak, for example in Canada during fall, there is no benefit to releasing spores at the same time every day. Our data challenge the perception of fungal dispersal as risky, wasteful, and beyond control of individuals; our data suggest the timing of spore liberation may be finely tuned to maximize fitness during atmospheric transport.


Assuntos
Microbiologia do Ar , Movimentos do Ar , Estações do Ano , Esporos Fúngicos/fisiologia , Atmosfera , Canadá , México
14.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732572

RESUMO

The wild chili pepper Capsicum chacoense produces the spicy defense compounds known as capsaicinoids, including capsaicin and dihydrocapsaicin, which are antagonistic to the growth of fungal pathogens. Compared to other microbes, fungi isolated from infected seeds of C. chacoense possess much higher levels of tolerance of these spicy compounds, having their growth slowed but not entirely inhibited. Previous research has shown capsaicinoids inhibit microbes by disrupting ATP production by binding NADH dehydrogenase in the electron transport chain (ETC) and, thus, throttling oxidative phosphorylation (OXPHOS). Capsaicinoids may also disrupt cell membranes. Here, we investigate capsaicinoid tolerance in fungal seed pathogens isolated from C. chacoense We selected 16 fungal isolates from four ascomycete genera (Alternaria, Colletotrichum, Fusarium, and Phomopsis). Using relative growth rate as a readout for tolerance, fungi were challenged with ETC inhibitors to infer whether fungi possess alternative respiratory enzymes and whether effects on the ETC fully explained inhibition by capsaicinoids. In all isolates, we found evidence for at least one alternative NADH dehydrogenase. In many isolates, we also found evidence for an alternative oxidase. These data suggest that wild-plant pathogens may be a rich source of alternative respiratory enzymes. We further demonstrate that these fungal isolates are capable of the breakdown of capsaicinoids. Finally, we determine that the OXPHOS theory may describe a weak primary mechanism by which dihydrocapsaicin, but not capsaicin, slows fungal growth. Our findings suggest that capsaicinoids likely disrupt membranes, in addition to energy poisoning, with implications for microbiology and human health.IMPORTANCE Plants make chemical compounds to protect themselves. For example, chili peppers produce the spicy compound capsaicin to inhibit pathogen damage and animal feeding. In humans, capsaicin binds to a membrane channel protein, creating the sensation of heat, while in microbes, capsaicin limits energy production by binding respiratory enzymes. However, some data suggest that capsaicin also disrupts membranes. Here, we studied fungal pathogens (Alternaria, Colletotrichum, Fusarium, and Phomopsis) isolated from a wild chili pepper, Capsicum chacoense By measuring growth rates in the presence of antibiotics with known respiratory targets, we inferred that wild-plant pathogens might be rich in alternative respiratory enzymes. A zone of clearance around the colonies, as well as liquid chromatography-mass spectrometry data, further indicated that these fungi can break down capsaicin. Finally, the total inhibitory effect of capsaicin was not fully explained by its effect on respiratory enzymes. Our findings lend credence to studies proposing that capsaicin may disrupt cell membranes, with implications for microbiology, as well as human health.


Assuntos
Ascomicetos/metabolismo , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Capsicum/microbiologia , Sementes/microbiologia , Antibiose , Especificidade da Espécie
15.
Mycologia ; 111(5): 758-771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31408397

RESUMO

To meet a global demand for timber, tree plantations were established in South America during the first half of the 20th century. Extensive plantings of non-native species now are found in Brazil, Chile, Argentina, and Uruguay. In Colombia, miscellaneous plantations were established in the 1950s, during a period of intensive local logging, when policies to limit deforestation in native Quercus humboldtii forests were established. One unforeseen consequence of planting non-native trees was the simultaneous introduction and subsequent persistence of ectomycorrhizal fungi. We sought to document the origins and spread of the introduced Amanita muscaria found in Colombian plantations of the Mexican species Pinus patula, North American species P. taeda, and Australian species Acacia melanoxylon and Eucalyptus globulus. In Colombia, Amanita muscaria is establishing a novel association with native Q. humboldtii and has spread to local Q. humboldtii forests. According to a Bayesian phylogeny and haplotype analysis based on the nuclear rDNA internal transcribed spacer region ITS1-5.8-ITS2 (ITS barcode), A. muscaria individuals found in four exotic plant species, and those colonizing Q. humboldtii roots, have a Eurasian origin and belong to two Eurasian haplotypes. This is the first time the spread of an introduced mutualist fungus into native Colombian Q. humboldtii forests is reported. To arrest its spread, we suggest the use of local inocula made up of native fungi, instead of inocula of introduced fungi.


Assuntos
Amanita/crescimento & desenvolvimento , Amanita/isolamento & purificação , Especificidade de Hospedeiro , Quercus/microbiologia , Acacia/microbiologia , Amanita/genética , Análise por Conglomerados , Colômbia , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Eucalyptus/microbiologia , Florestas , Filogenia , Pinus/microbiologia , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
16.
Arch Biochem Biophys ; 665: 12-19, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771296

RESUMO

L-Tyrosine is an aromatic amino acid necessary for protein synthesis in all living organisms and a precursor of secondary (specialized) metabolites. In fungi, tyrosine-derived compounds are associated with virulence and defense (i.e. melanin production). However, how tyrosine is produced in fungi is not fully understood. Generally, tyrosine can be synthesized via two pathways: by prephenate dehydrogenase (TyrAp/PDH), a pathway found in most bacteria, or by arogenate dehydrogenase (TyrAa/ADH), a pathway found mainly in plants. Both enzymes require the cofactor NAD+ or NADP+ and typically are strongly feedback inhibited by tyrosine. Here, we biochemically characterized two TyrA enzymes from two distantly related fungi in the Ascomycota and Basidiomycota, Saccharomyces cerevisiae (ScTyrA/TYR1) and Pleurotus ostreatus (PoTyrA), respectively. We found that both enzymes favor the prephenate substrate and NAD+ cofactor in vitro. Interestingly, while PoTyrA was strongly inhibited by tyrosine, ScTyrA exhibited relaxed sensitivity to tyrosine inhibition. We further mutated ScTyrA at the amino acid residue that was previously shown to be involved in the substrate specificity of plant TyrAs; however, no changes in its substrate specificity were observed, suggesting that a different mechanism is involved in the TyrA substrate specificity of fungal TyrAs. The current findings provide foundational knowledge to further understand and engineer tyrosine-derived specialized pathways in fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Pleurotus/enzimologia , Saccharomyces cerevisiae/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Cinética , NAD/metabolismo , Oxirredutases/antagonistas & inibidores , Especificidade por Substrato , Tirosina/metabolismo
17.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635382

RESUMO

A large number of descriptive surveys have shown that microbial communities experience successional changes over time and that ecological dominance is common in the microbial world. However, direct evidence for the ecological processes mediating succession or causing ecological dominance remains rare. Different dispersal abilities among species may be a key mechanism. We surveyed fungal diversity within a metacommunity of pitchers of the model carnivorous plant Sarracenia purpurea and discovered that the yeast Candida pseudoglaebosa was ecologically dominant. Its frequency in the metacommunity increased during the growing season, and it was not replaced by other taxa. We next measured its competitive ability in a manipulative laboratory experiment and tracked its dispersal over time in nature. Despite its dominance, C. pseudoglaebosa is not a superior competitor. Instead, it is a superior disperser: it arrives in pitchers earlier, and disperses into more pitchers, than other fungi. Differential dispersal across the spatially structured metacommunity of individual pitchers emerges as a key driver of the continuous dominance of C. pseudoglaebosa during succession.IMPORTANCE Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments.


Assuntos
Fungos/crescimento & desenvolvimento , Microbiota , Sarraceniaceae/microbiologia , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação
19.
Commun Biol ; 1: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271996

RESUMO

Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

20.
Mol Biol Evol ; 35(11): 2786-2804, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239843

RESUMO

Fungi are evolutionary shape shifters and adapt quickly to new environments. Ectomycorrhizal (EM) symbioses are mutualistic associations between fungi and plants and have evolved repeatedly and independently across the fungal tree of life, suggesting lineages frequently reconfigure genome content to take advantage of open ecological niches. To date analyses of genomic mechanisms facilitating EM symbioses have involved comparisons of distantly related species, but here, we use the genomes of three EM and two asymbiotic (AS) fungi from the genus Amanita as well as an AS outgroup to study genome evolution following a single origin of symbiosis. Our aim was to identify the defining features of EM genomes, but our analyses suggest no clear differentiation of genome size, gene repertoire size, or transposable element content between EM and AS species. Phylogenetic inference of gene gains and losses suggests the transition to symbiosis was dominated by the loss of plant cell wall decomposition genes, a confirmation of previous findings. However, the same dynamic defines the AS species A. inopinata, suggesting loss is not strictly associated with origin of symbiosis. Gene expansions in the common ancestor of EM Amanita were modest, but lineage specific and large gene family expansions are found in two of the three EM extant species. Even closely related EM genomes appear to share few common features. The genetic toolkit required for symbiosis appears already encoded in the genomes of saprotrophic species, and this dynamic may explain the pervasive, recurrent evolution of ectomycorrhizal associations.


Assuntos
Amanita/genética , Evolução Biológica , Genoma Fúngico , Micorrizas/fisiologia , Adaptação Biológica , Amanita/enzimologia , Filogenia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...